搜索结果: 1-7 共查到“农业工程 NIR”相关记录7条 . 查询时间(0.035 秒)
基于模拟退火波长优化的草莓坚实度近红外光谱检测(Detection of Strawberry Firmness by NIR Wavelength Selection Based on Simulated Annealing Algorithm)
草莓 坚实度 近红外光谱 模拟退火算法
2010/12/29
为提高近红外光谱技术检测草莓坚实度模型的精度和鲁棒性,研究了一种基于模拟退火算法的波长优选方法,并找到一种与该算法配套的光谱预处理方法。利用光谱仪和物性仪分别采集草莓样品近红外漫反射光谱和坚实度数据,并采用标准正交变换、多元散射校正、一阶导数、二阶导数等方法对原始光谱进行预处理;最后,利用模拟退火算法优选与草莓坚实度高度相关的波数点变量,结合偏最小二乘法建立草莓坚实度预测模型。结果表明:经过标准正...
梨可溶性固形物含量NIR与变量筛选无损检测(Measurement of Soluble Solids Content in Pear by FT-NIR Spectroscopy and Variable Selection)
梨 可溶性固形物含量 近红外光谱
2010/12/28
为提高利用近红外光谱技术快速检测梨可溶性固形物含量的精度和稳定性,结合区间偏最小二乘和遗传算法(iPLS-GA)来筛选校正模型中的特征光谱区和变量,通过交互验证法确定模型中的主成分因子数和筛选的变量,并以预测均方根误差(RMSEP)和相关系数(Rp)作为模型评价标准。试验结果显示:iPLS-GA最优模型包含5个光谱区、50个变量和10个主成分因子。最佳预测模型相关系数(Rp)和RMSEP 分别为0...
洋梨硬度的便携式可见/近红外漫透射检测技术(Evaluation of European Pear (Pyrus communis L.) Firmness Based on Portable Vis/NIR Transmittance Technique)
洋梨 硬度 近红外光谱
2010/12/28
采用便携式可见/近红外检测仪快速检测阿巴特、康佛伦斯和五九香梨硬度。采集洋梨漫透射光谱(500~1010nm),经二阶导数和卷积平滑处理后,分别建立偏最小二乘法和多元线性回归模型。相关系数法和遗传算法用于选择偏最小二乘法建模变量,预测均方差分别为7.780N和8.080N,相对预测误差分别为26.24%和29.71%。多元线性回归模型使用7个变量,预测均方差和相对预测误差分别为7.740...
近红外玉米品种鉴别系统预处理和波长选择方法(Effects of Spectral Pretreatment and Wavelength Selection on Discrimination of Maize Seed Varieties by NIR Spectroscopy)
近红外光谱 玉米 品种鉴别
2009/11/3
以7个品种玉米籽粒的鉴别系统为研究对象,对比研究了6种预处理方法和波长选择对模型鉴别能力的影响。结果表明,在被比较的6种预处理方法中,一阶导数方法能够使模型有更好的鉴别性能。使用一阶导数预处理和全光谱区的模型平均正确识别率和正确拒识率最高,分别为98.6%和98%,有5个品种的模型的正确识别率和正确拒识率都达到了100%。波长选择对一阶导数模型没有明显作用,但能使标准正态变量变换和矢量归一化模型鉴...
鲜枣品种和可溶性固形物含量近红外光谱检测(Detection of the Fresh Jujube Varieties and SSC by NIR Spectroscopy)
鲜枣 近红外光谱 无损检测
2009/5/19
采用近红外光谱分析技术无损鉴别鲜枣品种和测定其可溶性固形物含量。对3个不同品种的鲜枣进行光谱分析,各获取30个样本数据。采用平滑法和多元散射校正方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据。将样本随机分成75个建模样本和15个预测样本,将建模样本的主成分数据作为BP神经网络的输入变量,鲜枣品种和可溶性固形物含量作为输出变量,建立3层人工神经网络鉴别模型,并用该...
在Visual C++环境中采用面向对象技术,开发了PCA-MBP-NIR定量分析模型软件。通过40份小麦样品的原始光谱、加噪光谱(信噪比为14 dB)与含水率所建立的PLS-NIR与PCA-MBP-NIR模型,对10份未知小麦样品的原始光谱、加噪光谱分别进行含水率的PLS-NIR与PCA-MBP-NIR预测分析。分析表明,对于含噪声的光谱,与PLS建模相比,使用PCA-MBP-NIR对未知样品预...